Unique magnetic properties and magnetization reversal process of CoFe2O4 nanotubes fabricated by electrospinning.

نویسندگان

  • Jiecai Fu
  • Junli Zhang
  • Yong Peng
  • Jianguo Zhao
  • Guoguo Tan
  • Nigel J Mellors
  • Erqing Xie
  • Weihua Han
چکیده

CoFe(2)O(4) nanotubes have been directly fabricated by single-capillary spinneret electrospinning. The external diameter of the CoFe(2)O(4) nanotubes ranges from 60 nm to 160 nm. The morphology and structure characterizations show that individual CoFe(2)O(4) nanotubes are made of CoFe(2)O(4) nanocrystals stacking along the nanotubes with no preferred growth directions and these individual nanocrystals are single crystal with a cubic spinel structure. Each nanocrystal was shown to be a single magnetic domain. The magnetic measurements show that the coercivity (H(c)) of the CoFe(2)O(4) nanotubes decreases from 10 400 Oe at 5 K to 300 Oe at 360 K. The CoFe(2)O(4) nanotubes have a spin reorientation (SR) at 5 K, which is different from CoFe(2)O(4) nanorods and nanoparticles. Based on the observed morphology and crystal structure, a micromagnetic model, "chain-of-rings", is developed to interpret the magnetic behavior of the CoFe(2)O(4) nanotubes. The theoretical coercivity (534 Oe) is in good agreement with the experimental results (509 Oe). It is believed that our work should open a new route to prepare various magnetic ferrite nanotubes and is significant for expanding the application of CoFe(2)O(4) into the new fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesise of CoFe2O4-Polyaniline Nanocomposite and Evaluation of its Magnetic Properties

Particles of Cobalt ferrite, CoFe2O4-, were coated with polyaniline (PANI) sulphate and phosphate during in-situ polymerization of aniline in an aqueous solution of sulfuric and phosphoric acid. The PANI-ferrite composites were characterized by Fourier transform infrared (FTIR) spectroscopy. Structures and morphology of products were studied by X-Ray Diffraction (XRD) and Scanning Electron Micr...

متن کامل

A novel method to fabricate CoFe2O4/SrFe12O19 composite ferrite nanofibers with enhanced exchange coupling effect

Nanocomposite of CoFe2O4/SrFe12O19 has been synthesized by the electrospinning and calcination process. A novel method that cobalt powder was used to replace traditional cobalt salt in the precursor sol-gel for electrospinning was proposed. The crystal structures, morphologies, and magnetic properties of these samples have been characterized in detail. Moreover, when the average crystallite siz...

متن کامل

REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thi...

متن کامل

Coprecipitation Synthesis of CoFe2O4 Nanoparticles for Hyperthermia

Cobalt ferrite (CoFe2 O4 ) nanoparticles have attracted significantly attentions for spintronics, recording media and bioapplications due to their unique magnetic and chemical properties. In this work, single phase CoFe2 O4 nanoparticles were synthesized at various coprecipitation temperatures (60, 80 and 90 °C) without post calcination. The effects of oleic acid as surfactant on the microstruc...

متن کامل

Synthesis, Characterization and Investigation of Magnetic Properties of Co3O4/CoFe2O4 Nanocomposite Prepared by Calcination of [CO(SALEN)(PPH3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPH3)(H2O)]4[Fe(CN)6] Binary Complex Salts

In this research the synthesis of [Co(Salen)(PPh3)(H2O)]4[Fe(CN)6] and [Co(Salophen)(PPh3)(H2O)]4[Fe(CN)6] schiff base complexes was reported. Co3O4/CoFe2O4 magnetic nanoparticles were prepared by calcination of these complexes at 500, 550 and 600°C. Precursor complexes were identified by FT-IR and UV-Vis spectroscopy and their thermal behavior was studied via TG/DTA. Nanomagnetic samples were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 13  شماره 

صفحات  -

تاریخ انتشار 2012